Advancing Science Through High Performance Computing

Esmond G. Ng (egng@lbl.gov)

National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory

The National Energy Research Scientific Computing Center

- ◆ The National Energy Research Scientific Computing (NERSC) Center is a national supercomputing facility of the Office of Science at the US Department of Energy (DOE).
- 25th anniversary in 1999.

- ◆ NERSC provides unclassified, open computing resources; serving >2,000 users in basic science disciplines that are relevant to DOE mission.
- ◆ NERSC's mission is to advance science by making new scientific discoveries using high-performance computing.

Reengineering Large-Scale Scientific Computing

- In 1995-1996 DOE and NSF competitively re-examined the role of centers.
 - Rapidly changing technology.
 - Growth of computational approaches in all disciplines.
 - as important as theoretical and experimental research
 - Facilities alone are necessary but not sufficient.
- NERSC's New Model: Major Facility + Intellectual Services
 - The center serves as the working interface between computer science and physical science.
 - Creation of two departments:
 - High Performance Computing Department
 - High Performance Computing Research Department
 - The research department
 - develop new methods, algorithms, and tools via medium to long term collaborations with scientific user community
 - success stories
 - materials science (NERSC, ORNL, AMS, BNL)
 - cosmology (NERSC, LBNL, CalTech, UC Santa Barbara, UC Davis)

Intellectual Home of NERSC

NERSC Future Technologies Group

- Mission:
 - Research and development on next-generation infrastructure for scientific computing.
- Major focuses:
 - Clusters.
 - Tools for parallel programming (ACTS).
 - High performance access to remote storage and network-aware applications (DPSS, Netlogger).

Clusters

- Clusters of PC's:
 - Competitive today with traditional servers for small to medium sized problems.
 - May replace large supercomputers in 2-3 years.
- Advantages:
 - Low hardware cost.
 - Seamless desktop to teraflop integration.
 - Flexibility in configuration --- can be tailored to users.
 - Development platform for large systems.
 - Parameter studies for subproblems.
- Disadvantages:
 - Very expensive to setup and maintain --- expertise required.
 - Environment not very robust.
- SLAC-NERSC collaboration:
 - Helped SLAC with purchase and configuration of PC cluster.

LBNL Cluster Activities

- BLD --- Berkeley Lab Distribution.
 - Plug-and-play software distribution for scientific clusters (Release 1 in 1H2000).
- High performance standardized communication for clusters.
 - M-VIA: Virtual Interface Architecture (VIA) for Linux (Release 2 in 12/99).
 - MVICH: MPI for VIA (Alpha release).
- Scalable system software for large production Linux clusters. Nascent multilab/multi-agency effort.
 - Addresses possible lack of vendor support for very large systems in 2-3 years.
 - Berkeley, Argonne, Los Alamos have formed a close collaboration.
 - Tutorial on production Linux clusters at SC99.
- Both BLD and M-VI A will benefit SLAC applications.

NERSC Scientific Computing Group

Missions:

- Interact and collaborate with the scientific community in research and development on computational areas that benefit DOE and the nation.
 - design and implementation of highly efficient computational kernel algorithms for current and future NERSC applications
 - develop state-of-the-art methodologies and strategies for computational sciences

Major focuses:

- Numerical linear algebra.
- Adaptive refinements for unstructured meshes.
- Materials Science.
- Astrophysics.
- Earth/environmental sciences.

Scientific Computing Collaborators

- Proximity to researchers at nearby top universities.
- Stanford University, Scientific Computing and Computational Mathematics Program (SCCM).
 - Gene Golub, Fletcher Jones Professor of Computer Science
 - eigenvalue and singular value computations
 - iterative methods for solving systems of linear equations
- University of California, Berkeley, Computer Science Department.
 - James Demmel (adjunct appointment @ LBNL/NERSC)
 - numerical linear algebra algorithms (LAPACK, ScaLAPACK)
 - Jonathan Shewchuk
 - computational geometry, mesh generations
- University of California, Davis, Computer Science Department.
 - Zhaoj un Bai
 - eigenvalue computations

Unstructured Mesh Refinements

- Goal: Refine regions of a mesh to better capture fine-scale phenomena, or to handle stability and accuracy.
- ◆ Powerful tool for efficiently solving computational problems with evolving physical features (shocks, vortices, shear layers, crack propagation).

14,605 vertices 28,404 triangles

488,574 vertices 1,291,834 triangles

Unstructured Mesh Adaptations and Refinements

Complicated logic.

- Many computer science issues.
 - Data structures.
 - Algorithmic choices.

Parallel Unstructured Mesh Adaptations and Refinements

- Difficult to parallelize efficiently.
 - Irregular data access patterns (pointer chasing).
 - Workload grows/shrinks at runtime (dynamic load balancing).
 - Workload redistribution (remapping).
- ◆ Developed PLUM and implemented on several architectures.
 - Cray T3E
 - SGI Origin 2000
 - Tera MTA

Program Paradigm	System	Best Time	Р	Code Incr	Mem Incr	Scala- bility	Porta- bility
Serial	R10000	6.4	1				
MPI	T3E	3.0	160	100%	70%	Medium	High
MPI	O2K	5.4	64	100%	70%	Medium	High
Shared-mem	O2K	39.6	8	10%	5%	None	Medium
Multithreading	MTA	0.35	8	2%	7%	High*	Low

Numerical Linear Algebra

- Direct methods for solving sparse systems of linear equations.
 - Issues:
 - fill
 - data structures
 - algorithms
 - performance
- Have developed many state-of-the art solvers, which have been incorporated in various large-scale scientific and engineering applications.
- BlkFCT solver for symmetric positive definite matrices.
 - optimization applications
 - structure analysis and structure dynamics calculations
 - computational fluid dynamics calculations
 - statistical analysis
- SuperLU solver for general nonsymmetric matrices.
 - computational quantum chemistry
 - circuit simulations
 - materials science

Numerical Linear Algebra

- ◆ I terative methods for solving systems of linear equations.
 - Issues:
 - convergence
 - preconditioning techniques
 - efficiency/performance
- Eigenvalue computations.
 - I ssues:
 - convergence/accuracy
 - sparsity concerns
 - efficiency/performance
- Staff members @ NERSC are involved in the development of parallel preconditioning techniques.
 - structural analysis
 - materials science
 - image analysis
- Expertise in Lanczos/Krylov-type algorithms for eigenvalue computations.

Recent Results in Sparse Matrix-Vector Multiplications

- Matrix-vector multiplication is a crucial kernel in iterative methods and generalized eigenvalue algorithms.
- "Ordering" of matrices (particularly for those arising from PDE-applications):
 - Determines the sparsity pattern of matrices.
 - Affects data access pattern in sparse matrix-vector multiplications.
 - Ordering time is crucial when mesh refinements are needed.
- Preliminary study using 4 ordering options:
 - Original order (ORIG).
 - Self-Avoiding Walk (SAW).
 - mesh-based linearization with excellent locality, especially attractive for mesh refinement
 - Reverse Cuthill-McKee (RCM).
 - reduce profile or bandwidth
 - Graph partitioning (METIS).
 - reduce number of edge cuts (communication)
- ◆ Test problem: 661,054 vertices and 1,313,099 triangles; assembled matrix has 2,635,207 nonzeros.

Recent Results in Sparse Matrix-Vector Multiplications

On-going Work on Sparse Matrix-Vector Multiplications

- Hybrid algorithms
 - Partition using good partitioner (e.g., METIS), followed by local reordering (e.g., SAW).
- Handle adaptively refined meshes.
- ◆ Integrate algorithms in iterative solvers (e.g., AZTEC) and eigen-solvers (e.g., Lanczos/Jacobi-Davidson eigenvalue algorithms).
 - Particularly important in accelerator modeling effort.

Never-ending Issues/Challenges

- Changing architectures ...
 - Programming paradigms.
 - Combining shared-memory (e.g., OpenMP) and distributed-memory (e.g., MPI).
 - methodologies, strategies
- Increasing memory hierarchy ...
 - Data partitioning/locality/access.
- Problem-dependency ...
 - Every problem has something different.
 - Algorithms need be adapted and/or designed accordingly.
- ◆ NERSC is committed to provide the expertise and to engage in a long-term research collaborative effort with its users.

